A bright note in his Music of the the Spheres

Kepler and rays 

Crater Kepler and its Rays
  
At nearly 12 days into the current lunation sunlight is bathing young crater
Kepler and its extensive ray system. Kepler falls into the category of a smallish
complex crater (31 km in diameter and 2.75 km deep) with a low peak rising from an
otherwise small flat central floor. Most of the floor is covered with slumped wall
debris. A small part of the inner wall appeared terraced. Crater Kepler lies
between the Oceanus Procellarum and the Mare Insularum both of which are made of
dark lavas. Very prominent rays extend from the rampart and ejecta blanket well
beyond the crater rim for more than 300 km. Some of the rays, especially in the
east, overlap rays of other craters such as Copernicus.

Crater Kepler was named by the Jesuit astronomer Giovanni Battista Riccioli about
28 years after the death of Johannes Kepler. He also named Crater Tycho after
Tycho Brahe, the man with the accurate data measurements that helped make Kepler
famous.

West northwest of Kepler the large old crater close to the terminator is Marius.
Using a higher magnification ocular than that used in this drawing, I could see
several domes to the north of the crater in very good grazing light. Kepler is a
favorite crater target of mine as the moon approaches full phase.
  
  Sketching:
  For this sketch I used: black Strathmore 400 Artagain paper 9”x12”, white and
  black Conte’ pastel pencils and a blending stump.
  Telesccope: 10 inch f/ 5.7 Dobsonian and 9 mm eyepiece 161X
  Date: 4-29-2007 2:45-3:45 UT
  Temperature: 18° C (65° F)
  Clear, calm
  Seeing:  Antoniadi  III
  Colongitude  51.8 °
  Lunation 11.6 days
  Illumination 90.5 %
  
  Frank McCabe

Brightest Heliocentrist

Aristarchus

When I visit the Moon with my telescope, unless I’m working with friends on a collaborative project, I like to see what takes my fancy when I reach the terminator. Invariably something catches your eye and just won’t let it go, that is what I go for, he who shouts the loudest. On the evening of Saturday April 28th it turned out to be Aristarchus magically illuminated along the terminator.
  
I used my Antares 105mm F14.3 refractor, viewing through a Denk binoviewer
yeilding 163x.
  
Using a black sketching pad and a mix of watercolour pencils, pastel pencils and
conte sticks after 15 minutes this was the result.
  
Dale Holt

Schiller Sextet

Schiller Sextet 

 This composite image started out as a single white pastel on black paper
sketch posted on the ‘Cloudy Nights’ sketching forum. As the discussion
around it evolved, other Cloudy Nighters posted their own sketches of this
distinctive crater, and I began to construct the montage seen here in it’s
final form. It is fascinating to see the same lunar feature captured in so
many different styles and with different media. Between us we have covered
nearly three years of Schiller observations, each at around the same
lunation stage of 11-12 days when the local lighting is advantageous and
dramatic. The sketching media used varied between white pastel (or Conte’)
on black paper, and graphite pencil (or charcoal) on white paper.

Equipment used (and magnification):

Sally Russell, 105mm F/6 refractor, 480x
Michael Rosolina, 8″ F/10 SCT, 200-170x
Rich Handy, 12″ SCT, 639x
Eric Graff, 6″ F/6 reflector, 240x
Jeremy Perez, 6″ F/8 Newtonian, 240x
Erika Rix, 70mm ETX, 88x

(With the kind permission of Michael, Rich, Eric, Jeremy and Erika, and with
my thanks to them for generously sharing their sketches and making this
project possible.)
 
Sally Russell

England

About 4.6 billion years ago, few million years after the formation of the proto Earth from the accretion of planetesimals in the nascent Solar nebula, our still molten world would suffer an impact from a another Mars sized protoplanet that would tear almost one fifth of the Earth’s crust and mantle away and scatter a debris cloud into Earth orbit. Soon thereafter this material would coalesce into the early Moon, the building of which would continue as major impacts accumulated over the next few billion years. Although at this time in our early Moon’s past much of the debris had already been swept clear of its orbital path, a close look at Luna herself would have revealed several stragglers, moons of our Moon in close tow. Jostled and buffeted by gravitational forces, these moons were either lost to space, impacted the early Earth, or were pulled inexorably until they plummeted to the lunar surface. Such impacts from degraded orbits share a common attribute, not only on the Moon, but on the other bodies of the Solar System as well. They all show an extremely shallow impact angle, usually in the range of 2 to 3 degrees to the surface. When such a moon strikes a body it will impart most of its kinetic energy longitudinally along its path, carving out a long elliptical shaped crater and sending ejecta laterally across the range. Working in tandem with these very oblique impacts are the tidal stresses that can break apart a small moon, thereby lengthening the “footprint” of the event by allowing space between successive strikes, much as seen in secondary crater chain formation.

Between 3.85 and 3.92 Billion years ago during the Nectarian epoch, one small gleaming moon was tugged and pulled, probably influenced by various mascons that had already developed in the gravitational field of the Moon. Falling out of orbit, it would follow a trajectory that would take it around the far side for the last time. As the little moon fell, tidal stresses split it into two or three large pieces, which traveled together as they continued their descent over the limb and around the southwest highlands, over the craters Gruemberger, Blancanus and finally Scheiner, where they impacted into the Zucchius-Schiller basin, creating the very oblong 174 km x 69 km crater, Schiller. Over the course of the next several hundred million years the flow of mare lavas would fill the basin and the floor of the long deep gouge, covering some the evidence of the violence of this event. So next time you are gazing at the Moon’s southwestern quadrant, stop by Schiller and remember when our Moon had moons.

Rich Handy
Poway, California

Seaside Crater

Gassendi 

Gassendi is my favourite crater due to its many varied features.  This
crater has it all, with central peaks, craterlets,  internal rilles, 
and a breached crater wall where the Sea of Moisture has flooded in.  
It also  borders onto a rough highland region. You can spend a lot of
time just taking in the whole view let alone trying to sketch it.  In
fact the biggest problem that one faces when doing lunar sketches has to
be deciding on the level of detail to include.   Sketch was done April
30/2004  using graphite pencils, black ink and whiteout on white
paper.   Telescope was a 6″ Maksutov Newtonian with binoviewer 20mm
eyepieces and 2x barlow.

Gerry Smerchanski
Teulon, Manitoba, Canada

Between the ears of the rabbit

Craters Gutenberg and Goclenius 

Craters Gutenberg and Goclenius
  
    In the mid 1600’s Johannes Hevelius named this highland region east of the Sea
of Fertility Colchis (Land of the Golden Fleece) within a few years Giovanni
Riccioli named the same region Terra Manna. Two hundred years later both of
these names disappeared as the craters of the region continued to be named.
This lunar surface being erased by the shadow of the terminator early this morning
is between the ears of “The Rabbit in the Moon”. The largest crater with an
illuminated floor is battered Gutenberg, a 4 billion year old 75 km diameter
formation with a large breaching impact crater (Gutenberg E) on its northeastern
rim. East of the crater the widest and deepest part of Rimae Goclenius was glimpsed
as the seeing periodically improved. Domes in this area could not be seen with
certainty due to poor seeing. Southeast of Gutenberg crater Goclenius a 56 km
Nectarian age crater appears round with a floor in complete darkness. Also close to
the terminator are craters Magelhaens through Colombo.

Sketching:
For this sketch I used: black Strathmore 400 Artagain paper, white and black Conte’
pastel pencils and a blending stump.
Telesccope:10 inch f/ 5.7 Dobsonian and 9 mm eyepiece (161x)
Date: 4-6-2007 7:08-8:20 UT
Temperature: -1.6°C (29°F)
Partly cloudy, breezy
Seeing: Antoniadi IV
Colongitude 133.2 °
Lunation 18.2 days
Illumination 89 %

Frank McCabe

A photogenic pair

Theophilus and Cyrillus at Sunrise 

Theophilus and Cyrillus at Sunrise

Sketched over a 1.5 hour period at the eyepiece on Sunday April 22,
2007.  (2:30 to 4:00  UT 23/04/2007)   More time spent afterwards
colouring in shadow regions etc.  Done with graphite pencils (4H to
4B),  black ink and whiteout on white paper.   Scope was Celestron
9.25,  binoviewer,  2x barlow,  and 24mm eyepieces.  Picture was
reversed left to right once scanned to give a upright and correct
left/right view.

At the public star party last month (March) with the moon at the same
phase, I used a similar scope setup trained on these same craters to
illicit some “oohs”  and “wows” from the crowd.   After spending most of
the time looking at these craters I realized that the pair was quite
‘photogenic’ and would make for a nice sketch.    This month,  they were
even more strategically placed to reveal the terrain.  The smaller
crater Madler was also quite interesting and included.    One thing that
made this sketch a bit out of the ordinary was the unusual interior to
Cyrillus which has some unusual landscapes near the border with
Theophilus.  The light and shadows between Theophilus and the terminator
was also unusual and complicated.  My first sketch in over a year; it
seems I’m slowing up.  Taking this much time to capture all the details
is not the best for accuracy on transient lighting on lunar features.

Gerry Smerchanski

On the edge of a fertile sea

Langrenus and the Sea of Fertility 

Langrenus at the Edge of the Sea of Fertility

With the Harvest moon just past and the shadow of the setting sun approaching the eastern shore of the Sea of Fertility, crater Langrenus stands out in all its glory. Langrenus is an Eratosthenian Period crater, between one and three billion years old. This crater is about 133 km. in diameter with a rim 2.6 km. above the bright, mostly flat floor. Mountain peaks near the center stand 1 km. high. Rays from the crater can be seen projecting in a westward direction across the Sea of Fertility. Much older (four billion plus years) and slightly larger than Langrenus to the south along the terminator is the crater basin Vendelinus. The walls of this crater were dealt crushing blows delivered by the impacts that created craters Lohse, Lame  and Holden which are drawn clockwise from north to south. Many additional smaller crater impacts on Vendelinus attest to the age of this old battered basin.

More than 400 km. to the northwest, grazing angle impaction created the craters Messier and Messier A. These craters exhibit a long pair of rays extending westward across the remainder of the mare. Note the perpendicular (north-south) rays centered on Messier. Laboratory experiments have demonstrated this pattern of so called “butterfly rays” can be duplicated with shallow angle high speed impacts.

Frank McCabe

Sketching:
For this sketch I used: white copy paper 6”x 8”, and a 2HB graphite pencil
at the eyepiece with the addition of marker ink to darken shadows indoors.

Telesccope: 10 inch f/ 5.7 Dobsonian and 9mm eyepiece
Date: 10-9-2006 5:00-5:45 UT
Temperature: 10°C (50°F)
Clear
Seeing:  Pickering 5
Co longitude: 114 °
Sunset longitude: 66.1° E.
Lunation:  16.8 days
Illumination:  94%

Lunar luminaries

2006 07 07

Lansberg/Gamma and Delta

“Wednesday night (Thursday for UT), was a practice session for imaging with my
Rebel.  I finally bought a t-ring adaptor during a star party a few weeks ago and
had some fun playing with the new toy. The guys in the DSLR forum are giving me some
great pointers.  Feels very strange entering that realm, but I have a feeling it
will compliment the sketching well for my observations.  Plus gives me yet another
way to enjoy this hobby to the fullest!

It was then time to put the camera away and dig out my sketch kit.  Paul, being the
thoughtful husband that he is, bought Tom L’s binoviewers for me last month.  Tom,
if you’re reading this, I absolutely LOVE them!  Wow!  Thank you both so much!!!
I’ve been having a lot of fun with black Strathmore paper and Conte’ crayons for my
solar work, so with Rich in mind, I got up the nerve to try my first lunar sketch
with this media. Lansberg and the surrounding craters were my main targets that
night.  I explored the terminator, tried to count craterlets in Plato, and admired
Copernicus (and was tempted to try it again, as the last time I tried to sketch that
beauty, my sketch was cut short and it was never completed).

Lansberg is from the Imbrian period and is about 41km.  The central mountains stuck
out like two eyeballs in a dark room and I was pleased to see some terracing.  All
the little craterlets around Lansberg belong to it with Kunowsky D being the
exception to the NW.  Reinhold is trying to slip into the scene to the NE, but got
its toe stuck in the door.  Montes Riphaeus was very dramatic, or at least compared
to the rest of the scene in that area.

Lansberg

After a great day today, which included solar observing (boy, that sun feels
great!), I set up with the binoviewers again tonight.  Although seeing was poor, I
went ahead and bumped up magnification with 8mm TV Plossls (love that EP so much, I
had to get another one!).  It was good enough to support the level of detail needed
to observe domes.  Had I wanted to jump into a few complex craters, I believe a 20mm
would have been best.  So, domes it was and why not a pair?  Mons Gruithuisen Delta
and Gamma were flagging me down and I just could not resist. 

Gruithuisen Domes Delta and Gamma

They are also from the Imbrian period and close to 20km each.  Looking at VMA, Delta
is classified as a mountain and Gamma is a dome.  Rukl calls both of them a domelike
mountain massif.  Hmmm, let’s see what Chuck Woods has to say about them.  Aha!  He
calls them domes, most likely formed of silicic volcanic rocks.  For more reading on
this, see The Modern Moon, page 37.  I would love to be one of the geologists that
Chuck suggests may someday bang on the domes with their rock hammers to see what
they are made of.
It was a bit disappointing that I didn’t see the summit crater on Gamma, but there
was an obvious darkened area on the western top portion of it.  I loved buzzing
around in the all the little dips and valleys to the north of it, though.  The
little raised line between Gamma and Gruithuisen K looked like a pea pod. Isn’t the
lava covered floor beautiful in that region?”
Sketches done with black Strathmore Artagain paper and white Conte’ crayons

Erika Rix

Zanesville, Ohio

Between Serenity and Tranquility

Plinius and Dawes 

Craters Plinius and Dawes
  
After more than 23 days of very cold, cloudy, winter weather an approaching warm front got me out under the moon and stars on this clear, transparent night of good seeing. I centered the telescope field of view on craters Plinius and Dawes near the lunar terminator. This is the region I selected for my sketching. Plinius is the largest (43km) crater in the sketch. Its central peak and irregular, cratered floor are hidden in darkness but a hint of its terraced walls can be seen on the illuminated inner west margin. Further to the west the peaks near Promontorium Archeruia are catching the rising sunrays. About 55 km to the south of Plinius is crater Ross, a 26 km diameter crater identified only by its sunlit rim. This crater rests in the Sea of Tranquility. To the northeast of Plinius near the edge of the Sea of Serenity is the 19 km crater Dawes, its floor mostly in shadow. Directly to the north of Plinius the rilles of Plinius were clearly visible. In addition a small part of Dorsum Nicol is also seen. All of these features are positioned on the dark colored lavas at the boundary between the two above mentioned seas. The grazing sunlight helped to enhance the changes in topography.

Frank McCabe
  
  Sketch details:
  For this sketch I used: black Strathmore 400 Artagain paper 9”x12”, white and
  black Conte’ pastel pencils and a soft leather blending stump.
  Telescope: 10 inch f/ 5.7 Dobsonian and 6 mm eyepiece
  Date: 2-23-2007 1:05-1:45 UT
  Temperature: 0C ( 32F)
  Clear, calm
  Seeing:  Antoniadi  II
  Colongitude 339 degrees
  Lunation 5.4 days
  Illumination 35.7%